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ASYMPTOTIC SPECTRAL ANALYSIS OF CROSS-PRODUCT MATRICES

by

G. S. Watson

Department of Statistics
PRINCETON UNIVERSITY

ABSTRACT

'"Let x be a random vector in 3Rq and Mn =n
"'n 

n' '. .

E xix i ' be an estimator of M = Exx' with spectral1 1 3 . - z

form E.P. An expository account is given of the
3)

estimation of Xj and P. from the eigenvalues and

and vectors of Mn when n is large. This includes

a derivation of the basic formulae using a complex

variable method in the book by Kato (1980) and a

contrasting matrix method. Several extensions are

* indicated.
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AfMPTOTIC SPECTRAL ANALYSIS OF CROSS-PRODUCT FATICZS

0. S. Watson l

Princeton University

1.I trdtion

T. V. Anderson (1963) derived the asymptotic distribution of the

elgenvalues and vectors of the covariance matrix of a sample fromt a

Gaussian distribution. Davis (1977) took his basic method and used

It to get some results for the non-Gaussian case. The non-Gaussian

case Is of Interest either because one wants to study the sensitivity

of methods to deviations from Gaussianity - see eS. Nuirhead (1982)

-or because one has to deal with other distributions. For ezample

the distribution of the random, vector might be entirely restricted

*to some manifold embedded In K' like the surface of the unit

sphere or an hyperboloid of rotation; the cases of interest to us.

Lts (1978) at the suggestion of R. J. V. Barait used results

from the book by Kato (1976, 1980) on the perturbation theory of

linear operators to find the mnyutotic distribution of the eIgen-

Values of the matrix Mn l -:zL weetezaare Independently
n z x were th

drawn from a certain distribution on the surface a of the unit
2 q
sphere In3t . Tyler (1979, 1981) also used Kato's method to get

results In classical multivarlate analysis. But the techniqjue Is not

wall-known, nor Immedistely evident from Kato's book.



Kato's method calls upon Cauchy's Theorem in Complex Variable

Theory. Specifically consider the Integral of (a - 3 0O)p anti-

clockwise around a simple closed curve C In the complex plane which

does not go through so.

*J(z g)P dz
C

where p Is an Integer. Unes p -- 1, It In always taro. When

P -1, It Is zero If t0 is outside C and 2-i where to is inside C.

7he techniques and formulae below have many possible applications.

Some are given in Watson (1982a) but most remain to be exploited. In

the next section Kato's method Is explained for symetric non-random

-1 
p

matrices and then applied in Section 3 to covariance matrices.

The key formulae in Section 2 and the results of Section 3 have

of course been obtained before by direct matrix methods-

-though they are hard to justify. The Kato method not

.1 only gives a better Insight but Is eoar to do and to extend, e.g.

to provide asymptotic expansions.

2. The key to Kato

9fT jand Tl are real spnetric q 3c q matrices and z Is a small

real amber

T(z) To T 0 *T 1  (2.1)

can be thought of as a linear perturbation of T.. Let the spectral
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representation of the matrix To be

(2.2)

where

l V " are distinct real umbers,
m- .

a Pj Pk - 6JJ r (2.3)

rank P,- trace P, r Zq

Thus A Is an elgenvalue of To that Is repeated q tim. The I.

Invariant subspace V associated with A has dimension qj nd P

projects orthogonally onto V vhose direct sum is 3R.

The matrix T(z) may have q distinct oigenmvluss but we would

expect these to fall into r clusters about A1, ""' r and to condense

on A1 , oe. Ar as x- 0. Equa~ly the eigenvectors of T(z) should

lead us to the elgen subspaces V as x 0. To show how this

happens, define the resolvent of TO, t(€) as

1o(c) . (To - aq) 1  (2.4)

where C Is a complex nber. By (2.2) we may write

(C £(A -'? (2.5)

Observe that TO and %(C) cou-ee.

If C is any contour in the complex plan* which does not go

through any A5 Which are points On the real a&dIs, CaUChY's Theorem

and (2.5) Imply that

.2wi JC J (.6

where the sm Is over the projectors Pj associated with ellenvamues J

Imside C. The Integral of a ustriz Is the matrix of Integrals. Similarly



-4-

1 .,Cd Iw 1Pj (2.7)

We observe that the trace of (2.6) gives the sum of the dimensions

of the aigen subspaces associated with X within C. Similarly the

trace of (2.7) gives the am of the elgen values (times their

multiplicities) within C.

Ve now consider the resolvent of T(x).

IL(z, C) -(T(z) -CI~) %(I + xT R, (C))l (2.8)

If ve apply the results of the previous paragraph to I(m, .), we will

get Information about the eigen values I(T(x)) snd projectors P(T(x)),

of T(z). As z. 0, we would expect the values of X(T(z)) to condense.

on the eigen values Aof T

To obtain the required fououlae, we need to expand (2. 8) as a

power series. For a q xq mtrix A,

(I + Z)l I 22+ (2.9)
q qz~ A -.

where the series Is absolutely convergent provided lxi 1 hAl <I 1.

where 11A 11 is a norm of A. 7bus we can say that for z sufficiently

smll,

-l 2
(I q+ ZA) -I ZA +0 ) ON (2.10)

S. Applying (21)t (2.8), we lxi * (2.11) 0

Conaidsr'nou, the analogue of (2.6) when C Is a contour which

=ncloses only the elges value A ThMen 1
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2iCR(zoC)dC- fJ 3O(C)d + r R0(r.)T1R0(C)dC

+ 0(* 2) (2.12)

The first term on the right hand aide (r.h.s.) of (2.12) IsP.

To find the second term. we observe that, If we use (2.5) twice,

E E PkTl?1

r k~~ (PkTPt + PtT3!k) 1 1

- Z 2+ Z C)- .- (2. 13)

The contour Integral of the first term on the r.h.s. of (2.13) is zero.

We get contributions from the second term when k or £ equal Jand they

add to the symetric matrix

?iTZ +P~~ (2.14)

Observe, for later use, that this matrix has a zero trace because

'kIs null. Thus

1ul. Z(z,c)dC zX 1 k +____ _ 02) (2.15)
U1 ?lP+Ilk+ ()a~ kw j J'k

Is the analogue of (2.6).

The analogue of (2.7) to obtained by Integrating T(x)R(z, C) which

may, using (2.1) and (2.11), be written as

T(z)it(x,C) -T 0 %O(C) + z(T,%(r.) %it0 %(C)T 1 O(C)) + 0(k2). (2.16)

The Integral of the first teo= on the r.h.s. of (2.36) Is that In (2.7).

677**I *' 7



To find the second and third term we note that

-OOCTIOc 1 (2.17)

lIkpkTLL"LP TkX 1 31+ z 6.~1 - -t (2.18)
k(A LI "- L

where we have used (2.2) and (2.13). Thus we find that

T(x)R(x,C)dr. -jjz + E)

+ 0(Z 2 ) (2.19)

Observe that the trace of the second term in the coefficient of x

Is zero. (2.19) Is the analogue of (2.7).

In the applications ve have in add T(x) winl have q distinct

sigenvalues A 1 (Z). ... , A qC() and (orthonormal) cigenvectors

...~ , v Cx) so that

q
T(x) -Z A (X)Vi(Z)Vi(z)' (2.20)

is the spectral form for T(x). By using the reasoning that led to

(2.6) and (2.7) we my then evaluate the l.h.s.5 of (2.15) and (2.19).

Ri (x.C)dC Z v1 (x)v 1 (z)' (2.21)
ai
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and

2: ~T(z)R(Z,C)dr - Z I (z)VL(X)VL(x)' (2.22)

where both sum are over I such that X (z) are points inside

the contour C

Since trace VL(x)V1 (Z)' - y1 '(z)v 1L(x) - ,taking the

trace of both sides of (2.15) and using (2.21) yields

A W( Inside C a j + O ) (2.23)

for any contour C enclosing A An z -o0, one could use s......er

and sualler contours. Hence as x . the elgenvalues of T(x) form

clusters of qjroots about 1i caj i 1.. r) which condense uponAV

If we do not take the trace of (2.15) and write

* P - v (Z)vi~ ~ (2.24)
a AI(Z)Ca 

-

then (2.15) may be written as

P + Jj TA~ 2 ( (2.25)

TAking the trace of (2.19) yields

2S

z a(z) witiC qA + z trace T 4 0(12 (2.26)

so dividing through by mjad calling the 1. h. a. A the arithmetic

th
mean of the a cluster, vehave

W
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~x 2A+-grac I (2.27)'qj ae 1 ~Ox

The formulae (2.25) and (2.27) are Ideal for statistical applic-

ations, as vill be seen in the next section. We close this section

by observing that there is -o problem except complexity In getting

higher order approximations - one merely takes higher order terms

In (2.10). For example, the coefficient of x2 in R(x ) is ROTIOR0T1 R

so using (2.5) and partial fraction expansions the contour Integral

may be evaluated to give a lengthy formula. One then finds that

(2.23) nay be improved to

# A(x) Inside C -qj + O(x3 ) (2.28)

In Watson (1982a) explicit results are given when r = 2.

3. Larse sample theor7 of synetic cross-product matrices

Let z be a random vector in T1'q with components x, x 2  .. , q

and suppose that Eix xk z exists for all i, J, k, L - 1, .. , q.

lt Z' denote the transpose of x. Call Ezz' - [ ] - M a syn-

etrIc q x q matrix with spectral form

If z1 , ., z are independent copies of z, define

-n
"n Z Siz (3.2)

Then X by. the law of large umibers and by the multivariate

central limit -theorem

12

a1 ( - . (3.3)
n



The q(q+l)/2 functionally Independent elements of the symmetric

matrix C are Jointly Gaussian with zero means and a covarlance -

matrix V whose elements are

z-XY IZcxLz)Z(mh).-i , J, k - 1. (3.4)

To use the results of Section 2, we may write

- -+n11 2  l/2( (3.5)

Instead of

T(x) - To +z T

-1/2
From (3.3), T1 corresponds to G, x to n and M to TO Provided

so i In (3.1) is zero, the matrix Hn will, with probability one,

have distinct eigenvalues - Okamoto (1973). If say . 0, 1(5:)(Px)' _e

Is a matrix of zeros so that, taking the trace, E !1 12 - 0. Thus

Piz is a null vector andn 3 will have zero roots and the data will

determine the esigen subspace Ve xctly. This case has little Interest

so we assume that all the AX 3 0.
J

The matrix will be used to estimate the A.and , J-1 , r."

Combining (3.5) with (2.24), (2.25) and (2.27), we have the key results:

for j It 1, * re.

a 1/2 ~. P d k I .I Z (3.6)

a 1/2 - A 4 trc GP (3.7)

.1* .

: !~
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''5

The r.h.s. of (3.6) and (3.7) are linear In the Gaussian
e

matrix G so that the l.h.s. have asymptotically Gaussian distrib- -

utionS with zero means and variances and covariances that depend

upon the covariance matrix V of G.

(3.7) Is univariate and so easy to understand, e.g. It leads to

a normal confidence interval for A, although we will see that one

will do better with a transformation. (3.6) describes the difference

between estimated and true projectors and needs further simplification.

Using the Euclidean matrix orm (A 112 - trace A'),

p 112 trace P G P kG
alIlP i - L2  2- - 2 (3.8)A; k)  :::

Again, one might examine the different effects of f and P on

vectors. For e-xe. f v V"

112 - d k(3-)a -P J ly V. Pk 1 3.9). ..-

272"' N~ore fundamentally iLf Vj is the subepace onto whiLch i? projects,

i a

a Pa ai 1(.0 7

;ora. Idvnt if V I the stationa rn. y,,, P ,rject

will be~i  "clse to.. - V If we "- v' sawy arewe

values Of (P. .UY )( given up uu11 P v 1 1, I.e., we should

cousider

2tu'p 9v - Ou'F u
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where 6 and *are Lagrangian umltpliers. Hene*

*Pj u- #PV (3.U1)

so that

0 9 stationary value of (P u)' (P v)

-C, say

Hence the equations (3.11) will only have a solution If

-C P PD

I - 0 (3.12)
aiP C0

This equation for C my be reduced to

I PJ ~ - ~~a 0 (3.13)

which basano-zero roots C.If, however, (3.6) Is used, one6

finds eventually that all the C are unity. Watson (198 2a) deals

with the case where r - -2 and shows, by taking the next term in the

expansions In Section 2, that n~i - C 2) have asymptotic distrib-.

utions. It Is conjectured that for any r the asymptotic joint

distribution of n(l-C1 ), *Got U(l - C )Is the Joint distribution

of the son-zero eigenvalus of

-A PGPkG?1
Ak) (3.14)

(A 2
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Some of the above results becm easier to understand If we

wits, since Iq P - r

-J px Zo z Y + + r (3.15)

One of the reasons results become simpler for the Gaussian Is

that there y I r are Independent. Since Exx' N A * i

- ~ YY 1i~k377 'A Pi (3.16)

typlk -0, (L k).K Z'y I

Thus (3.7) may be rewritten as

1/2

6j i nj :Li i i

-/ 2 i

so that by (3.16) and the Central Limit Theorms

L l2 ~- 5  G(.vryy)q32  (3.18)

where G (tt.X) stands for the Gaussian distribution In q di mensions
q

with mean vector ua and covariance matrix .Similarly (3.6) can

be written as

Ilo Ai Ak

V V!
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6(0,_

J.lI2(og(nlce-1 - 1 (:-I" (.0

Yau2in cse trlye tl22 oT ( .18)2r eas

"=,,,, =.. . ,' lj ) or ni (lo,(TlA) - 1) are'
asymptotically independent, a simplifyingi result which is8 not true

• ~In generl. Under no Circimstances could it be expected that the

voul be ineedn sic q -X

-lo

With this iLntroduction, the compact: paper by Tyler (1981) may -

be read for more details on . He also gives tess. -

special case of r - 2 and distributions restricted to Wa gtson (1982a).:'

! ~ ~~If .a dtitaal asumption is made that t:he.'W..,,

: ~ ~~~dIstr:Ibut:Ion of z depends only upon IIy1 II, ---, Iy II ,or. results :=:..

" my be derived - see Watson 198Th).

-- t2

4, Direct polagch to Ajre le theor of coss-product matr2ce,.

The elgevalues o t al e te roots M of inthiKu ian- case- o (4.1)

I '-

normal cenvectors are selected to span each of the nvariant .
y b i - -W 1

. Direc apraht as ml hoyo rs rdc arcs



subspaces V i and arranged as colmn vectors to form a q x q

orthogonal mnatrix i. Let the first q colums correspond to

the next qcolns to V2 , etc., and write it In partitioned form

a [N1 . 9069,nr)  (4.2)

Then since IB , 3N' I ve have

q

In . - O(ab). BN -I

Ing ( +4. 1 o3)

8 , a-., .... ,

and

'E3 - 1Q(jzq) (4.4)

a matriz partitioned so all Y2 subatrices are zero except for the

multiples of Identity matrimes a the diagonal.

If I Is applied to .(4.1), It takes the partitioned form.

6q~ -1/2 1/2 (4.5)

iLnce n* ve seek do 0(1) and 0(a"t/2 ernl I. tn

wmionsln of (4.5). Apply ng the formula

.• -J•A I I D - .3 D



-15-

wben A Is the leading submatrlz of (4.5), It is seen that RA C

is O(n 1 ) and so negligible. Bance ve may repeat the procedure to

find that equation (4.5) and hence (4.1) Is, to this order f-

r -,
I + -112119T3 0(4.6)

This shows that the eigenvalues of for large n, form clusters

thabout the r distinct roots I of M. Uxpanding the j factor in
-(4.6) to 0(n7112 , ve only need the product of the diaSonal terms

and find the equation

(j A)q(1 + a /2t - 0 (4.7)

SiLnce trace -'T trace I BT - trace P Ti by (4.3) thei ]IH iljlT J ~T ' .-"

qj roots of (4.7) tend to A asu a nd the leading term of the

polynomial (degree q) equation for A are

Al- (q) + trace P T + - 0 (4.8)

so that If the roots of ihia equation are denoted by

ZA -qA~ -/ trace P T1 , (4.9)

as we found in (3.27). But one cmaot expect to obtain the roots

in, *be cluster for A~ from (4.7) (it gives them to be I (q-1 times).

+S C 1-l2 uac P T (one)) be c, ba A Is within z71/ of A

all the terms In the matriz In (4.6G) are of ordei m -1/2* Eowever,

(4.8) does give the correct coefflemt for A in (4.6).

- . . .
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Since the eigenvalues of M3 win in general be distinct, the

approziustions made above are inadequate to discuss e.g. the joint

distribution of the eigenvalues In a cluster.

7k. following direct derivation of the analogue of (2.25)

ar (3.6) is harder to justify. Write

1p -11 P12 (4.10)

and, because the roots In the cluster are within m-.L of x set

x 3P p (X + a udU)p (4.11)

-1/2 1/ -/ -/

so that the term in 07/ yield the equation

T A A A a

or.

CH - X I)A -T P & (4-12)

Butm-A I I J(A- )P so that wcould elace Aby

A - P X and still satisfy (4.12). Thus (4.12) Is solved by

multiplying (4.12) by Z(Ak A jAi)lPk and adding 19Z so that

£ (AJ AkP1J P 1P1.

loweverO from (4.10) m ea that £ must be snymetric end this

determines I. Thus
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1/2T - .P.T.k

which is the desired result. Hover, without the results of I

Secton 3. (4.10) ad (4.11) are erely intitins.(1

5. dditional Remrks.--

Ci) Suppose (Zi. 7l  for ± - 1, .... a are independent copies .
of w pi r of rando vectors . 7), •€ Rs , ye u Define the

estiustor of N " xy

and asume that the Central Limit Theorem holds so that

U1/2( RU) d~ (5.2)

One my wish to estmate the sIngular values of N so one would find

the oon-aero elgenvalues of rI3 or 3n'1n whichever Is the smaller...

But using (5.2),

, ,, % WnIN + a3 1/2 (Cn + nI) (5.3)

so that the previous theory Is applicable.

(Si) Suppose that 21. an zIs a sample from one q dimensional

distrlbution; , ... , a sample from another distribution In IR41

MWsa let N a aIzz~ z ~ * a~ ftL*. 31, Thea we of ten wed

to study the solutions of

AV -A3 0 )v - 0 (5.4)
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Anderson (1958) gives examples and calls A and v the elgen

values and vectors of )in in the metric of %f. To study them in

large samples we suppose that the Central Limit Theorem applies

in both cases so that as a, n *

A, N x + n 12 G* 55

The esigenvaluos are those of if n1/2 Us whl/i hich by (5.5) are

those of
-1/2]

(I*11  (q - G** )(K + n2G)Z 2 -- -G*)H* -1/2 -j

S 1/121 ,1/2 + l../2Gl,_- 12  G)-I--

_ / -1 12 .9

-1/2-l -/

If we set n St. a 0 1 with aj 2 0 and 1.'i- (5.6) has the form

of a symmetric fixed matrix plus "1/2 times a symetric Gaussian

matrix so that the earlier thoery to applicable. S

4 4P

SQ
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